from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(posrecip1(activate1(Y)), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(negrecip1(activate1(Y)), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(posrecip1(activate1(Y)), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(negrecip1(activate1(Y)), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
ACTIVATE1(n__cons2(X1, X2)) -> ACTIVATE1(X1)
2NDSPOS2(s1(N), cons2(X, n__cons2(Y, Z))) -> ACTIVATE1(Z)
PLUS2(s1(X), Y) -> S1(plus2(X, Y))
2NDSNEG2(s1(N), cons2(X, n__cons2(Y, Z))) -> ACTIVATE1(Y)
SQUARE1(X) -> TIMES2(X, X)
PI1(X) -> FROM1(0)
2NDSNEG2(s1(N), cons2(X, n__cons2(Y, Z))) -> ACTIVATE1(Z)
2NDSPOS2(s1(N), cons2(X, n__cons2(Y, Z))) -> ACTIVATE1(Y)
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
PI1(X) -> 2NDSPOS2(X, from1(0))
PLUS2(s1(X), Y) -> PLUS2(X, Y)
TIMES2(s1(X), Y) -> PLUS2(Y, times2(X, Y))
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
2NDSPOS2(s1(N), cons2(X, n__cons2(Y, Z))) -> 2NDSNEG2(N, activate1(Z))
TIMES2(s1(X), Y) -> TIMES2(X, Y)
FROM1(X) -> CONS2(X, n__from1(n__s1(X)))
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
2NDSNEG2(s1(N), cons2(X, n__cons2(Y, Z))) -> 2NDSPOS2(N, activate1(Z))
ACTIVATE1(n__cons2(X1, X2)) -> CONS2(activate1(X1), X2)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(posrecip1(activate1(Y)), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(negrecip1(activate1(Y)), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ACTIVATE1(n__cons2(X1, X2)) -> ACTIVATE1(X1)
2NDSPOS2(s1(N), cons2(X, n__cons2(Y, Z))) -> ACTIVATE1(Z)
PLUS2(s1(X), Y) -> S1(plus2(X, Y))
2NDSNEG2(s1(N), cons2(X, n__cons2(Y, Z))) -> ACTIVATE1(Y)
SQUARE1(X) -> TIMES2(X, X)
PI1(X) -> FROM1(0)
2NDSNEG2(s1(N), cons2(X, n__cons2(Y, Z))) -> ACTIVATE1(Z)
2NDSPOS2(s1(N), cons2(X, n__cons2(Y, Z))) -> ACTIVATE1(Y)
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
PI1(X) -> 2NDSPOS2(X, from1(0))
PLUS2(s1(X), Y) -> PLUS2(X, Y)
TIMES2(s1(X), Y) -> PLUS2(Y, times2(X, Y))
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
2NDSPOS2(s1(N), cons2(X, n__cons2(Y, Z))) -> 2NDSNEG2(N, activate1(Z))
TIMES2(s1(X), Y) -> TIMES2(X, Y)
FROM1(X) -> CONS2(X, n__from1(n__s1(X)))
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
2NDSNEG2(s1(N), cons2(X, n__cons2(Y, Z))) -> 2NDSPOS2(N, activate1(Z))
ACTIVATE1(n__cons2(X1, X2)) -> CONS2(activate1(X1), X2)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(posrecip1(activate1(Y)), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(negrecip1(activate1(Y)), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
PLUS2(s1(X), Y) -> PLUS2(X, Y)
from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(posrecip1(activate1(Y)), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(negrecip1(activate1(Y)), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS2(s1(X), Y) -> PLUS2(X, Y)
POL( PLUS2(x1, x2) ) = x1
POL( s1(x1) ) = x1 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(posrecip1(activate1(Y)), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(negrecip1(activate1(Y)), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
TIMES2(s1(X), Y) -> TIMES2(X, Y)
from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(posrecip1(activate1(Y)), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(negrecip1(activate1(Y)), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TIMES2(s1(X), Y) -> TIMES2(X, Y)
POL( TIMES2(x1, x2) ) = x1
POL( s1(x1) ) = x1 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(posrecip1(activate1(Y)), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(negrecip1(activate1(Y)), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVATE1(n__cons2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(posrecip1(activate1(Y)), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(negrecip1(activate1(Y)), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE1(n__cons2(X1, X2)) -> ACTIVATE1(X1)
Used ordering: Polynomial Order [17,21] with Interpretation:
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
POL( ACTIVATE1(x1) ) = x1
POL( n__cons2(x1, x2) ) = x1 + 1
POL( n__from1(x1) ) = x1
POL( n__s1(x1) ) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(posrecip1(activate1(Y)), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(negrecip1(activate1(Y)), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
Used ordering: Polynomial Order [17,21] with Interpretation:
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
POL( ACTIVATE1(x1) ) = x1
POL( n__from1(x1) ) = x1 + 1
POL( n__s1(x1) ) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(posrecip1(activate1(Y)), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(negrecip1(activate1(Y)), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
POL( ACTIVATE1(x1) ) = x1
POL( n__s1(x1) ) = x1 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(posrecip1(activate1(Y)), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(negrecip1(activate1(Y)), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
2NDSPOS2(s1(N), cons2(X, n__cons2(Y, Z))) -> 2NDSNEG2(N, activate1(Z))
2NDSNEG2(s1(N), cons2(X, n__cons2(Y, Z))) -> 2NDSPOS2(N, activate1(Z))
from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(posrecip1(activate1(Y)), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(negrecip1(activate1(Y)), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
2NDSPOS2(s1(N), cons2(X, n__cons2(Y, Z))) -> 2NDSNEG2(N, activate1(Z))
Used ordering: Polynomial Order [17,21] with Interpretation:
2NDSNEG2(s1(N), cons2(X, n__cons2(Y, Z))) -> 2NDSPOS2(N, activate1(Z))
POL( 2NDSPOS2(x1, x2) ) = x1
POL( s1(x1) ) = x1 + 1
POL( 2NDSNEG2(x1, x2) ) = max{0, x1 - 1}
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
2NDSNEG2(s1(N), cons2(X, n__cons2(Y, Z))) -> 2NDSPOS2(N, activate1(Z))
from1(X) -> cons2(X, n__from1(n__s1(X)))
2ndspos2(0, Z) -> rnil
2ndspos2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(posrecip1(activate1(Y)), 2ndsneg2(N, activate1(Z)))
2ndsneg2(0, Z) -> rnil
2ndsneg2(s1(N), cons2(X, n__cons2(Y, Z))) -> rcons2(negrecip1(activate1(Y)), 2ndspos2(N, activate1(Z)))
pi1(X) -> 2ndspos2(X, from1(0))
plus2(0, Y) -> Y
plus2(s1(X), Y) -> s1(plus2(X, Y))
times2(0, Y) -> 0
times2(s1(X), Y) -> plus2(Y, times2(X, Y))
square1(X) -> times2(X, X)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X